

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Oceansat-2 scatterometer winds by EUMETSAT

Anton Verhoef Ad Stoffelen Jeroen Verspeek Jur Vogelzang Yun Risheng

KNMI Scatterometer Team EUMETSAT OSI SAF EUMETSAT NWP SAF IOVWST, June 2012

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Outline

- Oceansat-2 scatterometer •
- European, EUMETSAT and • SAF activities
- Development of software • and data products
- Validation results
- Conclusions and outlook

The OSCAT scatterometer

- Ku-band radar instrument onboard of the Indian Oceansat-2 satellite
- Platform also carries an Ocean Colour Monitor and a Radio Occultation Sounder
- Launched in September 2009; India plans to launch ScatSat in 2013 with an identical instrument
- Rotating pencil beam instrument with QuikSCAT-like configuration
- Two beams: outer beam with VV polarisation, inner beam with HH polarisation
- Default product resolution is set to 50 km, vs. 25 km for QuikSCAT

European involvement in OSCAT

- KNMI is Principal Investigator in an Oceansat-2 AO project, other members are ECMWF, UK Met Office, Meteo France, Ifremer, CMIMA, DWD, ...
- KNMI contributes in the context of the EUMETSAT Ocean and Sea Ice SAF and Numerical Weather Prediction SAF
- Contributions in Cal/Val work, development of OSCAT Wind Data Processor (OWDP), provision of near-real time experimental wind products
- First test data (one orbit) was received in spring 2010, OWDP prototype was built using these data
- EUMETSAT is involved in Oceansat-2 ground segment: data acquisition of global orbits at Svalbard, processing in India with backup in Darmstadt
- Timeliness within 1 hour through EUMETCast (after end of full orbit)
- Near-real time data received since March 2012, development status OSI SAF wind product available since June 2011

OSCAT Wind Data Processor (OWDP)

- Developed within the NWP SAF, available to beta users
- Based on the SDP processor for QuikSCAT
- Reads Level 2A data in HDF5 from ISRO
- The Level 2A data contains backscatter values from so-called slices, these are averaged over a Wind Vector Cell area
- Wind inversion, quality control and ambiguity removal are done on WVC level like in SDP
- NSCAT-2 Geophysical Model Function is used, like in SDP
- Output is written in the same BUFR format as QuikSCAT, NetCDF available as well

Backscatter data issues

- Several batches of test data have been received from ISRO, each spanning several months
- Near-real time data are available since March 2011
- Older data versions show discontinuities at lower backscatter values, this causes problems in the wind retrieval for low winds
- Feedback was provided to ISRO
- Later data versions show improvements
- Problems are solved with ISRO upgrade to version 1.3, available since Dec. 2011

Oceansat-2 scatterometer winds IOVWST, June 2012

Improvements in wind processing

- We assume that OSCAT has the same backscatter PDF as other Ku-band instruments and comply with the same Geophysical Model Function for wind inversion (NSCAT-2)
- Ocean Calibration was developed for ASCAT ar QuikSCAT, the same method is used now for OSCAT
- In this way intercalibration of OSCAT and QuikSCAT can be achieved and stable FCDR's can be obtained
- Calibration coefficients vary significantly as function of WVC (contrary to QuikSCAT), see also the poster of Yun Risheng
- Further analysis is necessary
- Tuning of Quality Control
- Outer swath processing

OSCAT winds from OWDP

- Currently the outer swath (where only VV information is available) is excluded in the wind products
- We have tested with outer swath processing and results look promising
- Wind component standard deviations w.r.t. ECMWF are ~0.1 m/s higher in the outer swath as compared to nadir

Oceansat-2 scatterometer winds IOVWST, June 2012

OWDP winds vs. ECMWF

- Ocean calibration correction of the backscatter values was applied
- Wind component standard deviations are well within OSI SAF requirements

Oceansat-2 scatterometer winds IOVWST, June 2012

Quality Control

- Ku band is very sensitive to rain
- Quality control is tuned in the same way as was done for QuikSCAT
- MLE vs. wind speed, segregated w.r.t. TRMM/TMI rain rate
- Winds with a high MLE are rejected, threshold is dependent on wind speed
- Algorithm appears to work well in cloudy/rainy conditions
- Rejection rate is approx. 7% (was ~5% for QuikSCAT)

Oceansat-2 scatterometer winds IOVWST, June 2012

Near-real time data processing

- Satellite data are acquired at Svalbard, sent to India and then to Darmstadt
- Level 2A data are received at KNMI through EUMETCast with a latency of typically 1 hour (orbit files)
- Coverage is good, although sometimes orbits are delayed or missing
- Issue with coverage over North Atlantic
- Example of 7 September 2011, hurricane Katia
- Data are available for European noncommercial users at the moment; extension being negotiated
- Feedback received from ECMWF, Met Office, Meteo France, DWD

OSCAT: 20110907 700+3 lat lon: 24.10 -68.49 IR: 04:0 04:14

Oceansat-2 scatterometer winds IOVWST, June 2012

25 km product

- Development of 25 km product based on Level 1B from ISRO (cooperation with NOAA)
- Statistics against ECMWF

			30°N —	5,1
	Stdev u	Stdev v		
OSCAT 50 km	1.27	1.29	25°N —	
SCAT 25 km	1.44	1.46		
2uikSCAT 25 km	1.45	1.43		

Oceansat-2 scatterometer winds IOVWST, June 2012

Buoy verification

- Three months of data (but not the same set of buoys in all cases)
- OSI SAF QuikSCAT product had a negative bias that will be corrected in the reprocessing (planned as OSI SAF work)
- OSCAT is not yet at the same level as ASCAT or QuikSCAT
- OSCAT 25 km is of comparable quality as OSCAT 50 km and will provide useful details for nowcasting extreme events

	Speed bias	Stdev u	Stdev v
OSCAT 50 km	0.07	1.91	2.07
OSCAT 25 km	0.03	1.94	1.96
ASCAT 25 km	0.03	1.65	1.84
ASCAT coastal	0.04	1.68	1.83
QuikSCAT 25 km	-0.45	1.75	1.71

Current status and next steps

- Improvement of backscatter calibration and quality control
- Improvement of ice screening model
- Outer swath processing
- Reduction of wind speed biases vs. model and buoys above 15 m/s (also present in QuikSCAT): GMF adjustment
- Development of automatic orbit-wise product monitoring flag
- OSI SAF PCR (Product Consolidation Review) currently running, ORR foreseen for the next months
- Distribution only permitted to European, noncommercial users, but under negotiation with ISRO (ISRO approved NOAA wind release)
- Official release of OWDP software in NWP SAF

Oceansat-2 scatterometer winds IOVWST, June 2012

Conclusions and outlook

- OSCAT wind products are available in near-real time with development status, (pre)operational status achieved soon hopefully
- Data are available to European users only, but we get requests from all over the world so extension is highly desirable
- OWDP processing software is available for beta testers
- OWDP wind quality is within requirements
- Some issues require more analysis, e.g., variation of backscatter calibration over the swath
- Looking into outer swath processing and 25 km product
- Characteristics and performance of OSCAT appear to be comparable to QuikSCAT